ウエハ画像化と処理の方法及び装置
专利摘要:
切断されたまま、又は一部工程の終了した、多結晶シリコンウェハなどのバンドギャップ材料からルミネセンス画像を撮影する(2)一方法(1)が開示される。この画像は次に処理されて(3)、バンドギャップ材料中にある転位などの欠陥に関する情報を提供する。得られた情報は、バンドギャップ材料から製造される太陽電池の、開放電圧、及び短絡電流のような、種々の主要パラメータの予測に利用される(4)。この情報は、バンドギャップ材料の分類へも利用することが可能である。この方法は、バンドギャップ材料中の欠陥密度の低減を目的とする、アニールなどの追加プロセス工程の調整又は効果の評価に利用することも可能である。 公开号:JP2011516374A 申请号:JP2011502194 申请日:2009-03-31 公开日:2011-05-26 发明作者:トラプキ、トールステン;バルドス、ロバート、エー. 申请人:ビーティー イメージング ピーティーワイ リミテッド; IPC主号:C30B29-06
专利说明:
[0001] 本発明は、シリコンウエハなどの直接及び間接バンドギャップ半導体材料から得られるルミネセンス画像の処理の分野に関する。特に、ウェハ材料中の欠陥に関する情報を取得するために、ウェハのルミネセンス画像を解析する方法及び装置に関する。この情報は、ウェハを分類し、又はウェハから作製されるデバイスの動作特性を予測するために使用することができる。] 背景技術 [0002] 本明細書での先行技術に関するいかなる議論も、かかる先行技術が周知である、もしくは当分野における一般的な常識の一部を成している、ということを認めるものとみなされるべきではない。] [0003] 今日、商業用の光電池(特に太陽電池)のほとんどは、鋳造された多結晶シリコンブロックから切り出された、典型的に10x10cm2から21x21cm2の多結晶(mc)シリコンウェハから作られている。最も広範に採用されているスクリーン印刷方式の太陽電池プロセスにおける、シリコンウェハ切断後の太陽電池形成の主要プロセスステップは、1)表面損傷部エッチング、2)テクスチャ処理、3)拡散、4)SiN積層、5)金属接点のスクリーン印刷、6)焼成、7)端部分離、8)電気特性評価と区分、である。より高度な太陽電池の概念では、金属接点の下に局所的に高密度ドーピングされた領域を有する、いわゆる選択エミッタ構造が用いられる。他の先進セルの概念では、裏面再結合を改善するために、裏面に点接触を用いる。通常セルの電気的性能は製造プロセスの終わり近く又は終了時にのみ測定される。] [0004] 通常ウェハはまず、大きな鋳造されたシリコンブロック(インゴットとも呼ばれ、典型的には1x1x0.7m3程度までの寸法である)から、正方形(10x10cm2から21x21cm2までの)の棒(ブリックとも呼ばれる)に切り出され、次にワイヤソーで個別のウェハ(典型的には各150μm〜300μm厚さ)に切断される。現在のところ、ウェハメーカのあるものは、正方形ブロック、即ちブリックの端部に沿って、準定常状態光伝導度、又は光伝導度減衰の測定などのような、少数キャリアライフタイム測定を行い、局所的な材料品質に関する情報を取得している。ウェハ品質を評価するために、個別ウェハのウェハ領域内を1回又は数回ラインスキャンすることも利用されている。通常、各ウェハ内における材料品質の面内変動に関しては、ごく限られた2次元情報しか得られていない。これは、通常1〜3秒毎に1枚のウェハを処理する、太陽電池の大量生産ラインで、特性評価に割ける時間が限られているためである。] [0005] スクリーン印刷や電気接点の焼成等のような、太陽電池の個別製造工程のあるものは、実際のインラインプロセスとして実行することが可能であり、一部工程の終了したウェハが通常、ベルトに載せられて1つずつ搬送されて処理される。拡散やSiN積層等のような他の工程は、バッチプロセスとして、何十又は何百のウェハが同時に処理されることが多い。] [0006] 典型的なシリコン太陽電池製造ラインの平均スループットは、1〜3秒毎に1つの太陽電池が生産される速度であり、各サンプルのインライン特性評価に割ける時間は限定される。既存の空間分解能を有する測定は、概して遅くて、そのような短時間内でウェハの電子的品質に関する高分解能の2次元情報を得ることはできない。他方、小さな欠陥がデバイス性能に大きな影響を及ぼすことが知られている。従って、信頼性のある特性評価には高い空間分解能(ピクセル当り1mm未満)が必要とされる。こうして、メーカに取って、製造プロセス進行中の全ウェハ、又は大部分のウェハの電子的性質を十分に高い面内の空間分解能で評価できるツールは限られている。] [0007] ルミネセンスを放出するある種の材料は、電子の状態密度にギャップ、いわゆるバンドギャップを持っている。そのような材料は、バンドギャップ材料と呼ばれる。シリコンを含む、直接および間接バンドギャップ半導体は、この範疇に含まれている。シリコンのような半導体において、転位は一般的な構造欠陥であり、その存在により、その材料の電子的性質に大きな影響を与え、結果として、それらから製造される太陽電池のようなデバイスの性能に大きく影響する。] 発明が解決しようとする課題 [0008] 本発明の目的は、従来技術の少なくとも1つの不利を克服又は改善するか、もしくは有益な代替案を提供することにある。] 課題を解決するための手段 [0009] 第1の態様によれば、本発明は、バンドギャップ材料の解析を実行する方法を提供し、その方法は以下のステップを含む。 (a)バンドギャップ材料のルミネセンス画像を撮影(キャプチャ)するステップ。 (b)バンドギャップ材料中の欠陥に関する情報を取得するために、その画像を処理するステップ。 (c)バンドギャップ材料の分類を行うために、その情報を利用するステップ。] [0010] 第2の態様では、本発明は、バンドギャップ材料の解析を実行する方法を提供し、その方法は以下のステップを含む。 (a)バンドギャップ材料中の転位に関する情報を取得するステップ。 (b)バンドギャップ材料の分類を行うために、その情報を利用するステップ。] [0011] 本発明の第3の態様によれば、バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測する方法が提供され、その方法は以下のステップを含む。 (a)バンドギャップ材料の少なくとも1つのサンプルを取得するステップ。 (b)その少なくとも1つのサンプルのルミネセンス画像を撮影するステップ。 (c)そのサンプルからバンドギャップ材料の欠陥に関する情報を取得するために、その画像を処理するステップ。 (d)そのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するステップ。 (e)その動作特性を情報に関連付けるステップ。 ここで、(i)バンドギャップ材料の更なるサンプルに対して、そのサンプル中の欠陥に関する更なる情報を取得するために、ステップ(b)と(c)とを反復し、(ii)その更なる情報は、そのサンプルから作製されるデバイスの動作特性の予測に活用される。] [0012] 好ましくは、画像の処理は、当技術分野で既知の任意の好適な技術により画像を強調することを含む。] [0013] 取得された情報は、好ましくは、その基板材料の転位欠陥に関する情報を含む。より好ましくは、情報は、材料全体にわたる転位密度の指標を含む。] [0014] 画像処理は、転位の絶対的又は相対的な面積平均密度、又は転位密度に関連する評価基準を含んでもよい。この処理は、例えば太陽電池の金属接点との相対位置のような、転位の場所に基づく重み付け関数を含んでいてもよい。処理はまた、例えば、実効的な少数キャリアのライフタイムへの影響が明らかであるというような、欠陥の重大度に関する重み付け関数を含んでもよい。] [0015] バンドギャップ基板材料は、シリコンであってよい。一実施形態において、バンドギャップ基板材料は多結晶シリコンウェハを含み、ステップ(c)は好ましくは、基板としてシリコンウェハを利用する半導体デバイスの予想される動作特性を決定することが含まれる。別の実施形態では、バンドギャップ基板材料は、鋳造された単結晶シリコンウェハを含むことができる。] [0016] シリコンウェハは、切断したままの未処理のシリコンウェハ、又は一部工程の終了したシリコンウェハであってもよい。] [0017] 半導体デバイスは、光電池を含んでもよい。] [0018] 画像処理は、バックグラウンドのドーピング濃度で画像を規格化するステップを含んでもよい。] [0019] 特定の欠陥、特に転位は、同一ブリック中の近くの部分から取ったウェハ中に非常によく似た空間分布で出現することが多い。つまり、隣接する数枚のウェハ間では、空間分布は僅かしか変動しない。この実施形態は、1つのシリコンブロック即ちシリコンブリックの隣接又は近接のスライスから切断された1枚又は複数枚のウェハに対して本方法を実行し、その結果を内挿又は外挿して、別の隣接又は近接するウェハ上に形成したデバイスの予想される動作特性を決定することを含む。このことは、サンプルの部分集合のみの測定から、より大きなサンプル集合の性能予測を可能とする。] [0020] この方法は、ウェハ材料の端部沿いの端部欠陥又は不純物により生じる、材料品質の低い部分を特定するステップを含むこともできる。] [0021] この方法は、(d)太陽電池の品質向上を目的として、太陽電池形成の一連の処理ステップに関するパラメータを変更するために、解析ステップの結果を利用するステップを更に含むことができる。パラメータは、金属パターンをシリコンウェハ中に焼成するための条件を含むことができる。パラメータは更に、シリコンウェハ中へ物質を拡散させる拡散条件を含むこともできる。] [0022] ある実施形態においては、パラメータは、このバンドギャップ材料中へ物質を拡散させる拡散条件や、又は、その材料中に不純物添加領域を形成するための他の任意のプロセスパラメータを含む。] [0023] これに替わる実施形態においては、本方法は、ウェハのバックグラウンド不純物濃度に関してフォトルミネセンス画像を規格化するステップも含むことができる。規格化ステップは、各ピクセルのルミネセンス強度をバックグラウンド不純物濃度で割ることから成る。] [0024] 他の実施形態においては、プロセスは様々な選択肢を含むことが可能であり、その選択肢には、転位密度の面積合計又は面積平均又は前記相対的転位密度分布を、電池のグリッド線即ち金属接点に対する転位欠陥の位置に応じて、及び/又は転位欠陥の重大度に応じて、重み付けすることが含まれる。] [0025] フォトルミネセンス、マイクロ波光伝導度減衰、光透過又は光反射測定を利用して情報が取得される。光透過又は光反射測定を利用する場合には、測定は、1,400nm〜1,700nmのスペクトル域で行われる。] [0026] 以下で議論するように、上記の方法は、ある帯域のバンドギャップ材料と装置に好適であるが、好ましくは、開放電圧、短絡電流密度、曲線因子、又は効率を含む光電池の動作特性を予測するように設計されている。] [0027] 本発明の第4の態様によれば、バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測する方法が提供され、その方法は以下のステップを含む。 (a)バンドギャップ材料の少なくとも1つのサンプルを取得するステップ。 (b)その少なくとも1つのサンプル中の転位欠陥に関する情報を取得するステップ。 (c)その少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するステップ。 (d)その動作特性を情報に関連付けるステップ。 ここで、 (i)そのバンドギャップ材料の更なるサンプルに対して、更なるサンプル中の転位欠陥に関する更なる情報を取得するために、ステップ(b)を反復し、 (ii)その更なる情報を、更なるサンプルから作製されるデバイスの動作特性を予測するために利用する。] [0028] 本発明の第5の態様によれば、バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測する方法が提供され、その方法は以下のステップを含む。 (a)バンドギャップ材料の少なくとも1つのサンプルを取得するステップ。 (b)その少なくとも1つのサンプル中の転位欠陥に関する情報を取得するステップ。 (c)その情報を、バンドギャップ材料の分類を行うために利用するステップ。 (d)その少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するステップ。 (e)その動作特性を分類に関連付けるステップ。 ここで、 (i)バンドギャップ材料の更なるサンプルに対して、更なるサンプルのそれぞれに関する更なる分類を取得するために、ステップ(b)と(c)とを反復し、 (ii)その更なる分類を、更なるサンプルから作製されるデバイスの動作特性を予測するために利用する。] [0029] 好適な実施形態において、排除、値付、及び/又はバンドギャップ材料の異なる品質分類への区分、又はそのバンドギャップ材料から作製されるデバイスの動作特性の予測に、その分類を利用することもできる。] [0030] 本発明の第6の態様は、シリコンウェハ材料の解析を実行する方法を提供し、その方法は以下のステップを含む。 (a)シリコンウェハ材料のフォトルミネセンス画像を撮影するステップ。 (b)その材料中の欠陥に関する情報を取得するために、その画像を処理するステップ。 (c)シリコンウェハ材料の分類を行うために、その情報を利用するステップ。] [0031] 第7の態様では、本発明は、シリコンウェハから作製されるデバイスの1つまたは複数の動作特性を予測する方法を提供し、その方法は以下のステップを含む。 (a)少なくとも1つのシリコンウェハサンプルを取得するステップ。 (b)その少なくとも1つのサンプルのルミネセンス画像を撮影するステップ。 (c)その少なくとも1つのサンプルの欠陥に関する情報を取得するために、その画像を処理するステップ。 (d)その少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するステップ。 (e)その動作特性を情報に関連付けるステップ。 ここで、 (i)更なるシリコンサンプル中の欠陥に関する更なる情報を取得するために、その更なるサンプルに対してステップ(b)と(c)とを反復し、 (ii)その更なる情報を、更なるサンプルから作製されるデバイスの動作特性の予測に利用する。] [0032] 第8の態様では、本発明は、バンドギャップ材料の解析を実行するシステムを提供し、そのシステムは、バンドギャップ材料のルミネセンス画像を撮影するための画像撮影装置と、その画像を処理してその材料中の欠陥に関する情報を取得する画像プロセッサと、その情報を利用してそのバンドギャップ材料の分類を行う分類器と、を含む。] [0033] 第9の態様では、本発明は、バンドギャップ材料の解析を実行するシステムを提供し、そのシステムは、バンドギャップ材料中の転位欠陥に関する情報を取得するための取得装置と、その情報を利用してバンドギャップ材料の分類を行う分類器と、を含む。] [0034] 第10の態様では、本発明は、バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測するシステムを提供し、そのシステムは、 (a)バンドギャップ材料の少なくとも1つのサンプルのルミネセンス画像を撮影するための画像撮影装置と、 (b)その少なくとも1つのサンプル中の欠陥に関する情報を取得するための画像プロセッサと、 (c)その少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するための解析器と、 (d)その動作特性と情報との間の相関を取るための相関器と、 (e)その相関並びに更なるサンプルから取得された欠陥に関する情報とに基づいて、そのバンドギャップ材料の更なるサンプルから作製されるデバイスの動作特性を予測するための、予測器とを含む。] [0035] 第11の態様では、本発明は、バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測するシステムを提供し、そのシステムは、 (a)バンドギャップ材料の少なくとも1つのサンプル中の転位欠陥に関する情報を取得するための取得装置と、 (b)その少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するための解析器と、 (c)その動作特性と情報との間の相関を取るための相関器と、 (d)その相関並びにその更なるサンプルから取得された転位欠陥に関する情報とに基づいて、そのバンドギャップ材料の更なるサンプルから作製されるデバイスの動作特性を予測するための予測器と、を含む。] [0036] 第12の態様では、本発明は、多結晶シリコンウェハ中の粒界から転位欠陥を見分ける方法を提供し、この方法は、シリコンウェハーのルミネセンス画像を撮影するステップと、そのシリコンウェハーの通常の光学画像を撮影するステップと、そのルミネセンス画像と光学画像とを比較するステップと、を含む。] [0037] 第13の態様では、本発明は、多結晶シリコン中の粒界から転位欠陥を見分けるシステムを提供し、このシステムは、シリコンウェハーのルミネセンス画像を撮影するための第1の画像撮影装置と、シリコンウェハーの通常の光学画像を撮影するための第2の画像撮影装置と、そのルミネセンス画像と光学画像とを比較する比較器と、を含む。] [0038] 第14の態様では、本発明は、バンドギャップ材料中の欠陥密度を低減するためのプロセスをモニタする方法を提供し、この方法は、 (a)処理の前にその材料のフォトルミネセンス画像を撮影するステップと、 (b)材料中の欠陥密度の第1の測定値を得るためにその画像を処理するステップと、 (c)その処理の後に材料のフォトルミネセンス画像を撮影するステップと、 (d)材料中の欠陥密度の第2の測定値を得るためにその画像を処理するステップと、 (e)第1と第2の測定値を比較するステップと、を含む。] [0039] 第15の態様では、本発明は、バンドギャップ材料中の欠陥密度を低減するためのプロセスを制御する方法を提供し、この方法は、 (a)処理の前、又は処理の後、又はその両方において、材料の1つまたは複数のフォトルミネセンス画像を撮影するステップと、 (b)その材料中の欠陥密度の1つまたは複数の測定値を得るために画像を処理するステップと、 (c)その1つまたは複数の測定値に基づいて、処理の1つまたは複数の条件を調整するステップと、を含む。] [0040] 第16の態様では、本発明は、バンドギャップ材料中の欠陥密度を低減するためのプロセスをモニタするシステムを提供し、このシステムは、欠陥低減処理の前後において、材料のフォトルミネセンス画像を撮影するための画像撮影装置と、欠陥低減処理の前後において、材料中の欠陥密度の測定値を取得するためにその画像を処理する画像プロセッサと、測定値を比較するための比較器と、を含む。] [0041] 第17の態様では、本発明は、バンドギャップ材料中の欠陥密度を低減するためのプロセスを制御するシステムを提供し、このシステムは、欠陥低減処理の前、及び/又は後において、材料のフォトルミネセンス画像を撮影するための画像撮影装置と、 欠陥低減処理の前、及び/又は後において、その材料中の欠陥密度の測定値を取得するために前記画像を処理する、画像プロセッサと、少なくとも1つのその測定値に基づいて、処理の1つまたは複数の条件を調整するための制御器と、を含む。] 図面の簡単な説明 [0042] 次に、本発明の好適な実施形態を、添付の図面を参照しながら例示として説明する。 好適な実施形態のステップを示す図である。 別の好適な実施形態のステップを示す図である。 多結晶シリコンウェハのフォトルミネセンス画像を示す図である。 図2の画像にフィルタをかけた場合の図である。 加工前の多結晶シリコンウェハの、フィルタをかけたフォトルミネセンス画像を示す図である。 図4のウェハに隣接するウェハから形成された完全に処理済みの太陽電池の、高域フィルタをかけたフォトルミネセンス画像を示す図である。 図5の太陽電池の、分光光束誘起電流(LBIC)マップを示す図である。 未加工ウェハの転位密度と、そのウェハに隣接するウェハから作製した完成セルの開放電圧との相関を表す図である。 「境界」ウェハ、即ちインゴット端部近くの部分から切断されたウェハのフォトルミネセンス画像を示す図である。 図8のウェハに隣接するウェハのフォトルミネセンス画像を示す図である。 好適な実施形態を利用するための生産ラインプロセスを示す図である。] 図2 図4 図5 図8 実施例 [0043] 基板材料(例えば、シリコンウェハ)の電子的な材料品質の面内変動は、その材料から製造される太陽電池において、開放電圧、短絡電流密度、曲線因子、及び効率、等の主要性能パラメータに大きな影響を与える。] [0044] 好適な実施形態は、太陽電池製造の開始時、又はウェハ製造の終了時に、未加工ウェハの品質を迅速に評価し、電池の性能パラメータ、又は通常のプロセス条件下で期待されるそれらのパラメータの統計的変動を予測することが可能な、方法とシステムを提供する。その方法とシステムは、例えば、電子的材料品質を向上させることを意図したアニールのような、追加プロセスステップの影響の評価にも利用することが可能である。] [0045] 好適な実施形態は、バンドギャップ材料のフォトルミネセンス(PL)画像、即ち材料の光励起により生成される、バンド間再結合のルミネセンス画像、の解析を含む。別の実施形態では、ルミネセンスは、電気的励起(エレクトロルミネセンス)等の、他の手段により生成されてもよい。PL画像化は、シリコンウェハの特性評価のための、高速かつ非接触の測定技術であり、例えば、公開された米国特許出願第2009/0051914A1号に開示されている。その開示内容を本願に引用して援用する。高い空間分解能と、ウェハ1枚に付き約1秒のデータ取得所要全時間とで、切断されたままの多結晶(mc)シリコンウェハに対するPL画像化を実行することが可能である。] [0046] 好適な実施形態は特に、未加工、又は一部工程の終了したシリコンウェハの特性評価に適用されるものであり、転位等の欠陥の絶対的又は相対的な密度分布を評価し、その後、開放電圧、短絡電流密度、曲線因子、及び効率を含む太陽電池のパラメータを予測することが含まれる。本説明は、転位の分布密度を決定することを中心とするが、本発明の概念は、電池性能の劣化をもたらす可能性のある、不純物、クラック、シャントを含むその他の欠陥の分析へも適用される。] [0047] この欠陥密度分布に関する情報に基づき、ウェハは分類、値付けされて次のような利点をもたらす。 1)ウェハメーカは、この情報を用いて、出荷材料(ウェハ)の品質を評価することが可能であり、それにより、顧客(電池メーカ)に対して、仕様にあったウェハ品質を出荷したことを示し、又は品質に応じた製品の値付けをすることが可能となる。 2)電池メーカは、この情報を逆に利用できる。即ち、ウェハメーカから受け取ったウェハが所望の品質仕様を満たしているかどうかをチェックすることが可能である。 3)ウェハメーカは、未加工又は一部工程の終了したウェハ上のPL画像を系統的に利用して、転位分布を3次元(即ち、ウェハの面内方向と、ウェハが切り出されたブリックの下方向)で判定することができる。この情報は、製造プロセスを改善するために、ブロックの鋳造プロセス条件へフィードバックすることもできる。 4)電池メーカは、ウェハの仕分けにウェハ区分を利用することができる。ウェハの転位量が異なれば、最適プロセス条件が異なるので、ウェハはその区分に特定の最適化プロセス条件で処理される。更に、より高い品質が得られるようにプロセスの変更が行われる。例えば、ウェハを回転して、特定の欠陥密度の高い部分が完成状態の電池のバスバー付近に来ないようにする。レーザを用いて面内方向への高導電性電流パスを画定する、半導体フィンガ技術のような最新の電池概念においては、転位や不純物の多い領域を回避するようにレーザを案内することが可能である。 5)電池メーカは、材料品質が不十分なウェハを排除することもできる。 6)電池メーカは、ウェハを特定の太陽電池プロセスラインに割り当てるために、ウェハ区分を利用することも可能である。この割り当ては、同一種類の太陽電池の製造用であるが、ラインごとにプロセスパラメータの異なる別の太陽電池製造ラインへ割り当ててもよいし、或いは異なるタイプの太陽電池生産用の別の電池製造ラインへ割り当ててもよい。 7)PL画像から判定される欠陥分布パラメータは、ウェハ品質の標準パラメータとすることができる。 8)時間が経てば、改善された画像解析結果、及び区分/仕分けの改善されたアルゴリズムを提供できるような、大容量の解析データベースが構築可能となる。] [0048] 好適な一実施形態に含まれるステップは、シリコンのようなバンドギャップ材料からのフォトルミネセンス画像を撮影して処理し、その処理結果を、その材料から作製される光(太陽)電池等のデバイスの動作特性予測に利用することを含む。ステップ1を図1Aに示す。このステップは、フォトルミネセンス画像を撮影する第1のステップ2と、それに続いて、先ずサンプル中に存在し得る転位等の欠陥をハイライトするために画像を強調し、次いで、そのような欠陥の分布に関する情報を取得する、撮影画像の処理3を含む。この情報は、欠陥密度の絶対的又は相対的な面積平均を含み、或いは欠陥密度、又は欠陥分布、又はその両方に関連する測定基準を含む。最後にステップ4で、その材料から作られる太陽電池などのデバイスの動作特性の予測に、その情報が利用される。] 図1A [0049] 別の好適な実施形態に含まれるステップは、シリコンのようなバンドギャップ材料からのフォトルミネセンス画像を撮影して処理することと、その処理結果を材料の分類に利用すること、とを含む。ステップ5を図1Bに示す。このステップは、フォトルミネセンス画像を撮影する第1のステップ2と、それに続いて、先ずサンプル中に存在し得る転位等の欠陥をハイライトするために画像を強調し、次いで、そのような欠陥の分布に関する情報を取得する、撮影画像の処理3を含む。この情報は、欠陥密度の絶対的又は相対的な面積平均を含み、或いは欠陥密度、又は欠陥分布、又はその両方に関連する測定基準を含む。そして、そのサンプルへの性能指数の割り当てに利用される。最後にステップ6で、この性能指数は、例えば区分や値付けの目的で、サンプルをクラス分けするのに利用される。後からできるデバイスの動作特性を、絶対的な精度で予測することは不可能であるが、そのバンドギャップ材料から作られる太陽電池において、撮影画像の処理3の結果と、特定の太陽電池特性との間に統計的な相関があることがわかるだけで、区分や値付けの目的には十分であることが理解されるであろう。また、転位密度の高い材料から作られるデバイスは、平均的に特性が劣る、と言うデバイスの動作特性の予測に基づいてサンプルを分類することも可能である。] 図1B [0050] PL画像の撮影は既知であり、例えば、“Progress with luminescence imaging for the characterisation of silicon wafers and solar cells”、22nd European Photovoltaic Solar Energy Conference、ミラノ、イタリア、2007年9月、に開示されており、その内容は相互参照により本明細書に組み込まれるものとする。] [0051] 図2は、太陽電池製造に通常使用される、15x15cm2の1Ωcm、p型の多結晶シリコンウェハのPL画像10の例を示す。この画像は材料品質の大きな変動を表している。即ち、明るい領域11は、良好な電子特性を有する領域に対応し、暗い領域12は、電子特性の劣る領域に対応する。ここで述べるPL画像化の適用は、バンド間ルミネセンスの測定を指していることに留意されたい。これは、半導体の伝導帯にある電子と、価電子帯の正孔との間の放射再結合の際に生じるものである。シリコンでは、この過程で放射される光子の大多数は、室温で850nm〜1300nmのスペクトル域にある。] 図2 [0052] PL画像10は、15x15cm2の、切断したままの多結晶シリコンウェハ上で撮影された。更なる解析により、この画像には2つの主要な特徴があることがわかる。1)中心11における高輝度のルミネセンスは長範囲にわたって変動し、端部12に向かって輝度が下がっている。2)低輝度のものは、短範囲変動13をしている。後者のパターンは転位クラスタであると解釈される。個別の線のあるものは、再結合が活性な粒界により生じている可能性がある。] [0053] 好適な実施形態の方法における次のステップ3は、PL画像の処理である。所定の特定の画像特徴をフィルタリングしたり強調することが可能な、標準的な画像処理技術には種々のものがある。本発明において、特定の画像特徴とは、例えば、太陽電池性能を劣化させ得るある種の欠陥に特徴的なものである。一般の画像処理技術は、数ある中でも、ノイズ低減(メディアンフィルタリング、ウェーブレットドメイン法、バイラテラルフィルタリング、グレースケール・モルフォロジカル・リコンストラクション)、ライン検出(例えば、ソーベル・エッジ検出などのエッジ検出技術を利用したもの)、及び画像デコンボリューション(ウィナーフィルタリング、ブラインドデコンボリューション、Lucy−Richardsonによる反復デコンボリューション、ランドウェーバ法)を含んでいる。これらの技術は、R.GonzalezとR.Woods著の「Digital Image Processing」(第3版、2008年)のような標準的な教科書に説明されている。] [0054] 「高域フィルタリング」は、画像又はその他の信号やデータ集合の低周波成分を除去するフィルタリング処理の一般的用語である。本明細書においては、高域フィルタリングは、PL画像から長範囲のルミネセンス変動の影響を除去するために利用される。図3は、図2のPL画像を、長範囲の変動を除去するために高域フィルタで処理した例示的結果20を示す。結果として、例えば転位や再結合が活性な粒界による小規模の変動21の分布がより鮮明に示されている。一例に過ぎないが、単純な形態の高域フィルタは、原画像に高速フーリエ変換(FFT)を適用し、得られる周波領域の画像から空間周波数の低いものを除去し、逆FFTをかけることから成る。] 図2 図3 [0055] これに替わる実施形態では、画像に対して更なる処理ステップを適用することができる。一実施例として、良好な結果を得るために、画像そのものがバックグラウンドの不純物レベルに関して規格化される。バックグラウンドのドーパントは、例えばp型シリコンに対してはボロンであり、n型シリコンに対しては燐であってよい。別の実施例では、理論的な又は実験的に測定された、システムの点拡がり関数を考慮に入れて、上記の画像デコンボリューション技術の1つによって、画像コントラストが強調されてもよい。点拡がり効果は、一般的には理想的ではない光学系によって生じ、CCDカメラを利用するルミネセンス画像の場合には、CCDチップ内での光の面内散乱によっても起き得る。転位に関しては、デコンボリューションアルゴリズムは、転位や他の局所的特徴と、バックグラウンドとの間の画像のコントラストを大幅に強調することが可能である。] [0056] 材料中の転位をハイライトするために、例えばフィルタリングとデコンボリューション技術との組み合わせによってPL画像が強調されると、ソーベル・エッジ検出のような、1つまたは複数のアルゴリズムを用いて、転位密度分布に関する情報を取得するための画像処理が継続されてもよい。] [0057] 多結晶シリコンのPL画像において、転位を粒界から識別することは、実際には困難なことがある。PL画像を通常の光学像と比較することが、この点で効果的である。それは光学像では粒界は見えるが、転位は見えないからであり、結果としてこの2つの特徴が識別される。] [0058] 特定の欠陥、特に転位は、同一ブリック中の近接部分から取ったウェハでは非常によく似た空間分布が示すことが多い。つまり、隣接する数枚のウェハ間では、空間分布は僅かしか変化しない。図4は、高域フィルタ処理後の未加工ウェハのPL画像40であり、図5は、近接するウェハから作製した完成セルのPL画像50であり、図6は、その同じセル上で測定された分光光束誘起電流(LBIC)マップから得られた、対応する拡散長画像を示す。LBICデータ(図6)と、近接する未加工ウェハ上のPL画像(図4)との間には、強い相関がみられる。従って、フィルタ処理したセルのPL画像は、LBIC画像の代替とすることができ、フィルタ処理した未加工ウェハのPL画像は、そのウェハ又は同じブリックの近接部分から切り出した複数のウェハから作製したセルに期待される動作条件の指標として利用可能である。このことは、サンプルの部分集合のみの測定から、より大きなサンプルの集合に対する性能予測を可能とする。] 図4 図5 図6 [0059] 少数キャリアの拡散長が短い領域を表す、図6のLBICデータは、光励起キャリアの集積が比較的低い領域に対応し、これは、セルの短絡電流密度に直接の影響を与える。図4と図6のデータの間にある相関は、未加工ウェハ上のPL画像が、完成セル中の短絡電流密度に強い相関を持っていることを示している。同じように、図7は、上記のPL画像化から得られた、未加工ウェハ上の平均転位密度と、その「姉妹」(隣接)ウェハから製造された太陽電池の開放電圧との間の相関を示す。特に、転位密度が低いほど開放電圧が高くなる相関が見られ、従って、未加工又は一部工程の終了したウェハ中に観測される転位密度をセル電圧の予測に利用すること可能である。] 図4 図6 図7 [0060] 簡易的アプローチでは、太陽電池製造プロセスの初期段階で撮影したPL画像上での欠陥領域(転位のある領域)の絶対又は相対的な平均欠陥密度を、短絡電流密度、開放電圧、曲線因子、又は効率等のセルパラメータと相関づけることが可能である(図7に示すように)。より高度なアルゴリズムでは、例えば、金属接点(例、グリッドライン、又はバスバー)付近、又はセルの端部などのような、欠陥の位置に基づく重み関数を利用することができる。例えば、バスバー、又はメタルフィンガに近い欠陥は、バスバーから離れた所にある欠陥に比べて、セル電圧に対してより大きな影響を及ぼす可能性がある。] 図7 [0061] フォトルミネセンス画像で欠陥が暗く見えるほど、その再結合活性が高い。重み関数は、欠陥領域におけるルミネセンスの相対的強度変動に基づいてもよい。] [0062] ルミネセンス強度は、通常バックグラウンドのドーピング量に比例し、これは周知のように、インゴットの底部から頂部へ向けて変化している。このように、バックグラウンドドーピング量がわかっている場合(インゴット中のウェハ位置、又は別の測定によって)、ルミネセンス強度はドーピングレベルに応じて規格化でき、別々のウェハ間で、ルミネセンス強度のより定量的な比較が可能となる。その規格化は、測定したルミネセンス画像を一定因子で割り算することを含む。この因子は、それ自身が通常インゴット中のウェハ位置に非線形的に対応している、ウェハ上の平均バックグラウンドドーピング濃度に等しいか比例している。] [0063] 開示されたPL画像化技術は、未加工ウェハや完成セル上で利用できるばかりでなく、太陽電池製造の任意の処理工程にあるウェハ上で利用することが可能である。] [0064] シリコンウェハ又はシリコンブリック中の転位密度は、熱アニールプロセスによって減少できることが知られている(K.Hartmanら、“Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing”、Applied Physics Letters,93(12),122108(2008))。ウェハメーカ又は太陽電池メーカが、ウェハにそのような処理を行うことにより、セル性能への転位の影響を低減することができる。又、ウェハメーカは、ブリック全体をアニールすることも可能である。アニールプロセスは、1200〜1400℃で、バッチ処理、又は連続的なインラインプロセスとして実行可能である。このプロセスは、原則的には任意のタイプのシリコンウェハに対して行うことが可能であるが、転位を含むことがわかっているシリコンサンプル、即ち多結晶シリコンウェハ(これはストリングリボン法、及びEFG(edge−defined film−fed growth)法によるウェハを含む)や、鋳造単結晶ウェハに最も効果的である。] [0065] PL測定は、転位の絶対又は相対面密度及び転位影響エリアの空間分布(即ち、転位密度の絶対又は相対分布)の迅速評価が可能であるので、PL画像化をこの熱アニールプロセスのモニタに利用することが可能である。例えば、アニールの前後でサンプルにPL画像化を行えば、アニールプロセスの効率の定量評価が可能となる。個別のサンプルの追跡が不可能な場合には、アニール工程の前後で取得したPL画像から算出された、沢山のサンプルの転位密度の統計的データに基づいて解析を行うことが可能である。] [0066] このようにプロセスをモニタすれば、PL画像解析の結果に基づいてアニール条件を調節することができ、プロセス制御の改善にもなる。このプロセス制御は、所定のアルゴリズム又は実験データに基づいて、自動化することも可能である。これらのアニール条件は、例えば温度プロファイル(所望温度へのサンプルの加熱、1つまたは複数の一定温度での維持、最終的な室温への冷却)、又はアニール炉中の雰囲気、であってよい。アニールの最適処理条件は、転位密度そのものにも依存する。従って、アニール前のPL測定結果が、最適アニール条件の決定に利用されてもよい。これを、別々の品質区分へのウェハの仕分けと組合わせると、それぞれの区分を所与のアニール条件で処理することが可能となる。] [0067] アニール前に測定されたPL画像は、ウェハを低転位密度のものと高転位密度のものとへ分類し、アニール工程を必要としない低転位密度のウェハの選別に利用することもできる。これにより、アニール工程を追加しなければならないウェハの総量を低減することができ、ウェハ又はセル製造の運転を最適化することができる。] [0068] バンド間再結合によるルミネセンスのPL画像化は、シリコン中の転位密度分布を解析する、本発明の好適な方法であるが、それが唯一の方法ではない。ある処理と励起の条件下では、シリコン中の転位は、1400〜1700nmのスペクトル域で発光することが示されている(I.Tarasovら、“Defect passivation in multicrystalline silicon for solar cells”、Applied Physics Letters,85(19),4346−4348(2004))。ルミネセンスにも当てはまる、キルヒホッフの法則の一般化に従えば、ある特定の波長領域の光を吸収することができる材料のすべては、同一領域で光を放出することも可能であり、その逆も又同様である。従って、シリコンウェハ中の転位の多い領域は、転位密度がゼロか低い領域に比べて、1400nm〜1700nmのスペクトル域での吸収がより強いはずである。一実施形態において、そのスペクトル域に限定した反射又は透過測定が、シリコン中の転位の同定に利用される。この反射又は透過測定は、1400nm〜1700nmのスペクトル域に感応する走査型又は面露光型のカメラを、好適な狭スペクトル光源又は好適にフィルタリングした光源との組合せで用いることにより、空間分解能方式で実行することができる。] [0069] 転位とは別に、出発ウェハ材料(即ち、切断したままのウェハ)中でルミネセンス画像化によって同定可能な、特定タイプの欠陥の別の例としては、キャリア寿命を短くし、その結果としてセル効率を低下させる、ウェハの端部近傍の不純物関連の欠陥がある。切断したままの多結晶ウェハは、端部又は角部付近で材料品質が低いことが多い。これは、ウェハが切り出される鋳造多結晶ブロックの底部、頂部及び側壁において、不純物濃度が高いことが原因である。これらの不純物は、鋳造と結晶化の過程において、酸素や遷移金属又はその他の金属がるつぼ壁からシリコンブロック中へ拡散することにより生じることが多い。通常、ブロックの底部から頂部へ向けて進む結晶化過程において、頂部に「浮遊」する遷移金属と炭素等の不純物の析出に起因して、ブロック頂部ではキャリアの短寿命化が起きる。このブロックの底部と頂部と側部におけるキャリア低寿命領域は、ブロックからブリックを切り出す前に、ウェハメーカによって切除され、理想的には、品質の良い領域のみがウェハ製造に使用される。しかし、ウェハメーカが材料を十分に切除しない場合も多く、その結果、ウェハによっては、端部付近又は角部付近にキャリア寿命の非常に短い材料が見られることがある。] [0070] 図8は、ブロック端部(左)から切り出されたウェハのPL画像の例を示す。高不純物/低寿命の領域では、PL画像は概して暗く見えるが、転位や粒界などの欠陥は、暗くならずに、より明るく見える。このコントラストの反転は、転位が不純物をゲッタリングすることにより起こり、その近辺では材料品質が向上する。これらの「明るい」転位は、低不純物領域における「暗い」転位に比べてぼやけて見えるが、同じライン検出アルゴリズムがそれでも利用可能であって、転位をハイライトし、面密度を測定できる。] 図8 [0071] 従って、ある実施形態では、PL画像化を利用して、 1)インゴットの底部又は頂部からのウェハ、 2)インゴットの端部又は角部からのウェハ、 を同定可能である。 PL画像の画像処理は、ある種の特徴の自動同定と分類とを可能とする。例えばルミネセンス強度によってPL画像中で検出可能である欠陥の重大さや、欠陥の影響を受けている領域や、又はその組合せ、等に基づいて分類を行ってもよい。ウェハとセルのメーカは、このようにPL画像化を利用してウェハを仕分け、品質毎に区分する。セルメーカはそのようなウェハを排除してウェハメーカに返品するか、値引きさせる。] [0072] 一例を図9に示す。ここでは、4つの隣接するウェハが、(a)表面ダメージ層エッチング後、(b)エミッタ拡散後、(c)SiN積層後、(d)セルプロセス終了後、のそれぞれにPL画像化された。完成セル(d)中に見える転位クラスタは、拡散ステップ(b)の後にはっきりと観察される。転位は、切断したままのウェハ上でもPLで検出可能ではあるが、拡散工程の後での測定が有利である。それはこの工程の後では概してPL強度が高められて、短時間でのデータ取得、低品質設備の使用、結果としての空間分解能の高い画像のいずれか、もしくはこれらの任意の組合わせが可能となる。増強されたフォトルミネセンス信号は、エミッタ拡散側への、表面パシベーションの電界効果の結果である。] [0073] 一実施形態では、エミッタ拡散工程の後に、区分と仕分けと専用処理手順とが適用されてもよい。更に、拡散工程後のPL画像の結果に基づいて、焼成条件等のようなプロセス工程を調整することが可能であり、これにより、改善された最終結果を提供することが可能である。] [0074] 更なる変形も可能である。ウェハメーカは、例えば、PL画像化技術をウェハだけなく、全ブロック、又は個別の四角柱(ブリック)に利用することもできる。例えば、各ブリックは、カッティングしてウェハにする前に1つまたは複数の側面上でPL画像化測定を行ない、ウェハメーカが短寿命領域の場所を特定し、ブリック側面上の転位密度を検出することが可能である。それによって、所与の高さ(つまり、特定のウェハ位置)におけるインゴット内の転位密度に関する情報、又は高不純物濃度に起因する短寿命領域の位置に関する情報を取得することが可能である。いくつかの画像の組合わせにより、その関係のより詳細かつ正確な情報を獲得することが可能となる。ウェハメーカはまた、ブロック全体を測定し、不純物の多い側面、底部、頂部の切り捨てるべき位置の同定を最適化してもよい。] [0075] ウェハがスライスされる「ブリック」を測定する場合、個々のウェハを測定する場合ほどスピードが決定的な因子とはならない。通常、ブリックからは数百枚のウェハが切り出されるので、特性評価にはより長い時間をかけられる。従って、ライン走査するPL手段を利用することが可能である。この場合、照射は線状であり、放射光の撮影には線形検出器アレイが利用される。別法として、インゴット又はブロック上の様々な部分の、一連の2次元画像をマップ形式の構成で撮影し、それによってインゴット又はブロック全体の高分解能の画像を生成することもできる。] [0076] 図10には、好適な実施形態の方法を活用した、太陽電池生産用の生産ラインシステムの一例が模式的に示されている。このシステムでは、ウェハはベルトに沿って搬送され、そこでPL画像撮影システムによって画像が撮影される。得られた画像は処理され、解析されてから表示及び格納される。] 図10 [0077] 好適な実施形態は、単結晶ウェハと多結晶ウェハの両方に展開可能である。多結晶ウェハは通常、鋳造工程を用いて製造される。単結晶シリコンウェハの製造には、「チョコラルスキー法」(CZ)と「フローティングゾーン」法とを含む、異なった方法がある。セル効率の観点からは、単結晶シリコンの方が多結晶シリコンよりも概して好ましいが、太陽電池の効率の高さは、通常、単結晶ウェハの高い製造コストによって帳消しにされる。最近、鋳造単結晶シリコン製造の一方法が導入された。その方法の詳細は、Stoddardらによる、米国特許出願第2007/0169684A1号明細書に記載されている。従来の単結晶シリコンの一般的な利点は、多結晶ウェハに比べて不純物濃度が低く、転位や粒界のような構造欠陥が本質的にないことである。これに対して、上記の鋳造単結晶ウェハには転位が存在し得る。本発明の好適な実施形態の技術は、パシベーションなしの鋳造単結晶シリコンウェハに同等に適用できる。更に、初期段階においてルミネセンス画像化によってウェハから決定される構造欠陥密度は、電流密度、及び/又は電圧、又は他のセルパラメータと関連付けることが可能である。多結晶ウェハに比べて鋳造単結晶シリコンウェハの場合は、ルミネセンス画像から構造欠陥を同定することははるかに容易であり、信頼性が高い。これは、多結晶ウェハで撮ったルミネセンス画像に通常見られるその他の多くの特徴がないためである。] [0078] 好適な実施形態は、その他の光電池材料にそのまま適用可能であり、単結晶シリコン、薄膜シリコン、CdTe、アモルファスシリコン、微構造シリコン、ナノ結晶シリコンオングラス、2セレン化銅インジウムガリウム(CIGS)、及び関連する薄膜材料等のその他のバンドギャップ材料に利用可能である。] [0079] 本発明を特定の実施例を参照して説明したが、本発明をその他の多くの形態で実現できることは当業者には理解されるであろう。]
权利要求:
請求項1 バンドギャップ材料の解析を実行する方法であって、(a)前記バンドギャップ材料のルミネセンス画像を撮影し、(b)前記バンドギャップ材料中の欠陥に関する情報を取得するために、前記画像を処理し、(c)前記バンドギャップ材料の分類を行うために、前記情報を利用する、ステップを含む方法。 請求項2 バンドギャップ材料の解析を実行する方法であって、(a)前記バンドギャップ材料中の転位欠陥に関する情報を取得し、(b)前記バンドギャップ材料の分類を行うために、前記情報を利用する、ステップを含む方法。 請求項3 バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測する方法であって、(a)前記バンドギャップ材料の少なくとも1つのサンプルを取得し、(b)前記少なくとも1つのサンプルのルミネセンス画像を撮影し、(c)前記少なくとも1つのサンプルの欠陥に関する情報を取得するために、前記画像を処理し、(d)前記少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析し、(e)前記動作特性を前記情報に関連付ける、ステップを含み、(i)前記バンドギャップ材料の更なるサンプルに対して、前記更なるサンプル中の欠陥に関する更なる情報を取得するために、ステップ(b)と(c)とを反復し、(ii)前記更なる情報を、前記更なるサンプルから作製されるデバイスの動作特性を予測するために利用する、ことを特徴とする方法。 請求項4 バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測する方法であって、(a)前記バンドギャップ材料の少なくとも1つのサンプルを取得し、(b)前記少なくとも1つのサンプル中の転位欠陥に関する情報を取得し、(c)前記少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析し、(d)前記動作特性を前記情報に関連付ける、ステップを含み、(i)前記バンドギャップ材料の更なるサンプルに対して、前記更なるサンプル中の転位欠陥に関する更なる情報を取得するために、ステップ(b)を反復し、(ii)前記更なる情報を、前記更なるサンプルから作製されるデバイスの動作特性を予測するために利用する、ことを特徴とする方法。 請求項5 バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測する方法であって、(a)前記バンドギャップ材料の少なくとも1つのサンプルを取得し、(b)前記少なくとも1つのサンプル中の転位欠陥に関する情報を取得し、(c)前記バンドギャップ材料の分類を行うために、前記情報を利用し、(d)前記少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析し、(e)前記動作特性を前記分類に関連付ける、ステップを含み、(i)前記バンドギャップ材料の更なるサンプルに対して、前記更なるサンプルのそれぞれに関する更なる分類を取得するために、ステップ(b)と(c)とを反復し、(ii)前記更なる分類を、前記更なるサンプルから作製されるデバイスの動作特性を予測するために利用する、ことを特徴とする方法。 請求項6 前記ルミネセンス画像は、フォトルミネセンス画像である、請求項1又は請求項3に記載の方法。 請求項7 前記情報は、前記バンドギャップ材料中の転位密度の面積合計又は面積平均、又は転位の相対分布である、請求項1〜5のいずれか1項に記載の方法。 請求項8 前記バンドギャップ材料は、シリコンを含む、請求項1〜5のいずれか1項に記載の方法。 請求項9 前記バンドギャップ材料は、切断したままの又は一部工程の終了した、多結晶又は単結晶のシリコンウエハを含む、請求項8に記載の方法。 請求項10 前記利用するステップは、前記多結晶又は単結晶シリコンウエハから作製される半導体デバイスの動作特性を予測することを含む、請求項9に記載の方法。 請求項11 前記半導体デバイスは光電池を含む、請求項10に記載の方法。 請求項12 前記バンドギャップ材料はシリコンのブロックを含む、請求項1〜5のいずれか1項に記載の方法。 請求項13 前記バンドギャップ材料のインゴット又はブロックの隣接又は近接するスライスから切り出された1つまたは複数のウエハ上で前記方法を実行し、前記インゴット又はブロックから切り出された1つまたは複数の隣接するウエハから作製されるデバイスの動作特性を予測し、又は前記隣接するウエハの分類を行うために、その結果を内挿又は外挿する、ステップを更に含む、請求項1〜5のいずれか1項に記載の方法。 請求項14 前記バンドギャップ材料の端部に沿う、端部欠陥又は不純物により生じる材料品質の低い領域を突き止めるステップを、更に、又は代替的に含む、請求項1又は請求項3に記載の方法。 請求項15 前記光電池の品質改善を目的として、光電池作製の一連のプロセスステップに係わるパラメータを変更するために、前記分類又は予測動作特性を利用するステップを更に含む、請求項1〜5のいずれか1項に記載の方法。 請求項16 前記パラメータは、前記バンドギャップ材料への金属パターン焼成条件を含む、請求項15に記載の方法。 請求項17 前記パラメータは、前記バンドギャップ材料中へ材料を拡散させる拡散条件、または前記材料中に不純物添加領域を生成する他の任意のプロセスのパラメータを含む、請求項15に記載の方法。 請求項18 前記画像を、前記バンドギャップ材料の前記バックグラウンドドーピングレベルに関して規格化するステップを更に含む、請求項1又は請求項3に記載の方法。 請求項19 前記転位密度の面積合計又は面積平均、又は前記相対的転位分布は、光電池の前記グリッド線又は他の金属接点に対する、前記転位の相対位置によって重み付けされる、請求項7に記載の方法。 請求項20 前記転位密度の面積合計又は面積平均、又は前記相対的転位分布は、前記転位の重大度に応じて重み付けされる、請求項7に記載の方法。 請求項21 前記重大度は、ルミネセンス画像のコントラストに基づいて評価される、請求項20に記載の方法。 請求項22 前記情報は、前記バンドギャップ材料から、フォトルミネセンス、マイクロ波光伝導度減衰、光透過又は光反射測定を利用して取得される、請求項2、請求項4、または請求項5に記載の方法。 請求項23 前記光透過又は光反射測定は、1400nm〜1700nmのスペクトル域で遂行される、請求項22に記載の方法。 請求項24 前記デバイスは光電池であり、前記動作特性は、開放電圧、短絡電流密度、曲線因子、又は効率を含む、請求項3〜5のいずれか1項に記載の方法。 請求項25 前記バンドギャップ材料の分類は、区分、排除、値付、又は前記材料から作製されるデバイスの1つまたは複数の動作特性の予測を含む、請求項1、請求項2、又は請求項5に記載の方法。 請求項26 シリコンウエハ材料の解析を実行する方法であって、(a)前記シリコンウエハ材料のフォトルミネセンス画像を撮影し、(b)前記材料中の欠陥に関する情報を取得するために、前記画像を処理し、(c)前記シリコンウエハ材料の分類を行うために、前記情報を利用する、ステップを含む方法。 請求項27 シリコンウエハから作製されるデバイスの1つまたは複数の動作特性を予測する方法であって、(a)少なくとも1つのシリコンウェハサンプルを取得し、(b)前記少なくとも1つのサンプルのルミネセンス画像を撮影し、(c)前記少なくとも1つのサンプル中の欠陥に関する情報を取得するために、前記画像を処理し、(d)前記少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析し、(e)前記動作特性を前記情報に関連付ける、ステップを含み、(i)更なるシリコンウェハサンプル中の欠陥に関する更なる情報を取得するために、前記更なるサンプルに対してステップ(b)と(c)とを反復し、(ii)前記更なる情報を、前記更なるサンプルから作製されるデバイスの動作特性の予測に利用する、ことを特徴とする方法。 請求項28 バンドギャップ材料の解析を実行するシステムであって、前記バンドギャップ材料のルミネセンス画像を撮影するための画像撮影装置と、前記材料中の欠陥に関する情報を取得するために前記画像を処理する画像プロセッサと、前記バンドギャップ材料の分類を行うために前記情報を利用する分類器と、を含むシステム。 請求項29 バンドギャップ材料の解析を実行するシステムであって、前記バンドギャップ材料中の転位欠陥に関する情報を取得するための取得装置と、前記バンドギャップ材料の分類を行うために前記情報を利用する分類器と、を含むシステム。 請求項30 バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測するシステムであって、(a)前記バンドギャップ材料の少なくとも1つのサンプルのルミネセンス画像を撮影するための画像撮影装置と、(b)前記少なくとも1つのサンプル中の欠陥に関する情報を取得するための画像プロセッサと、(c)前記少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するための解析器と、(d)前記動作特性と前記情報との間の相関を取るための相関器と、(e)前記相関と更なるサンプルから取得された前記欠陥に関する情報とに基づいて、前記バンドギャップ材料の前記更なるサンプルから作製されるデバイスの前記動作特性を予測するための予測器と、を含むシステム。 請求項31 バンドギャップ材料から作製されるデバイスの1つまたは複数の動作特性を予測するシステムであって、(a)前記バンドギャップ材料の少なくとも1つのサンプル中の転位欠陥に関する情報を取得するための取得装置と、(b)前記少なくとも1つのサンプルから作製されるデバイスの1つまたは複数の動作特性を解析するための解析器と、(c)前記動作特性と前記情報との間の相関を取るための相関器と、(d)前記相関と更なるサンプルから取得された転位欠陥に関する情報とに基づいて、前記バンドギャップ材料の前記更なるサンプルから作製されるデバイスの前記動作特性を予測するための予測器と、を含むシステム。 請求項32 多結晶シリコンウェハにおいて、粒界から転位欠陥を見分ける方法であって、前記シリコンウエハのルミネセンス画像を撮影し、前記シリコンウエハの通常の光学画像を撮影し、前記ルミネセンス画像と光学画像とを比較する、ステップを含む方法。 請求項33 多結晶シリコンウェハにおいて、粒界から転位欠陥を見分けるためのシステムであって、前記シリコンウエハのルミネセンス画像を撮影するための第1の画像撮影装置と、前記シリコンウエハの通常の光学画像を撮影するための第2の画像撮影装置と、前記ルミネセンス画像と光学画像とを比較するための比較器と、を含むシステム。 請求項34 バンドギャップ材料中の欠陥密度を低減する処理をモニタする方法であって、(a)前記処理の前に前記材料のフォトルミネセンス画像を撮影し、(b)前記材料中の前記欠陥密度の第1の測定値を得るために前記画像を処理し、(c)前記処理の後に前記材料のフォトルミネセンス画像を撮影し、(d)前記材料中の前記欠陥密度の第2の測定値を得るために前記画像を処理し、(e)前記第1と第2の測定値を比較する、ステップを含む方法。 請求項35 バンドギャップ材料中の欠陥密度を低減する処理を制御する方法であって、(a)前記処理の前、又は前記処理の後、又はその両方において、前記材料の1つまたは複数のフォトルミネセンス画像を撮影し、(b)前記材料中の前記欠陥密度の1つまたは複数の測定値を得るために前記画像を処理し、(c)前記1つまたは複数の測定値に基づいて、前記処理の1つまたは複数の条件を調整する、ステップを含む方法。 請求項36 前記バンドギャップ材料はシリコンであり、前記欠陥は転位であり、前記処理は熱アニールである、請求項34又は請求項35に記載の方法。 請求項37 バンドギャップ材料中の欠陥密度を低減する処理をモニタするシステムであって、前記欠陥低減処理の前後において、前記材料のフォトルミネセンス画像を撮影するための画像撮影装置と、前記欠陥低減処理の前後において、前記材料の前記欠陥密度の測定値を取得するために、前記画像を処理するための画像プロセッサと、前記測定値を比較するための比較器と、を含むシステム。 請求項38 バンドギャップ材料中の欠陥密度を低減する処理を制御するシステムであって、前記欠陥低減処理の前、及び/又は後において、前記材料のフォトルミネセンス画像を撮影するための画像撮影装置と、前記欠陥低減処理の前、及び/又は後において、前記材料中の前記欠陥密度の測定値を取得するために前記画像を処理する画像プロセッサと、少なくとも1つの前記測定値に基づいて、前記処理の1つまたは複数の条件を調整するための制御器と、を含むシステム。 請求項39 前記バンドギャップ材料はシリコンであり、前記欠陥は転位であり、前記処理は熱アニールである、請求項37又は請求項38に記載のシステム。
类似技术:
公开号 | 公开日 | 专利标题 JP5893683B2|2016-03-23|ルミネセンス像形成を用いた間接バンドギャップ半導体の試験方法およびシステム Coletti et al.2008|Effect of iron in silicon feedstock on p-and n-type multicrystalline silicon solar cells Trupke et al.2012|Photoluminescence imaging for photovoltaic applications Haunschild et al.2011|Detecting efficiency‐limiting defects in Czochralski‐grown silicon wafers in solar cell production using photoluminescence imaging Fuyuki et al.2009|Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence US7091484B2|2006-08-15|Method and apparatus for crystal analysis US9157863B2|2015-10-13|Separation of doping density and minority carrier lifetime in photoluminescence measurements on semiconductor materials Mitchell et al.2011|Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios KR20050024279A|2005-03-10|프로세스 편차 모니터용 시스템 및 방법 JP5319593B2|2013-10-16|太陽電池の検査方法および検査装置 US6673639B2|2004-01-06|Method and system for evaluating polysilicon, and method and system for fabricating thin film transistor KR20060015497A|2006-02-17|반도체 상에 금속 입자들의 검출 방법 및 장치 CN104412098B|2018-10-30|检查半导体晶片的方法 JP2004526964A|2004-09-02|半導体のマイクロ欠陥の検出と分類 US6607927B2|2003-08-19|Method and apparatus for monitoring in-line copper contamination US9638741B2|2017-05-02|Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging Schön et al.2011|Understanding the distribution of iron in multicrystalline silicon after emitter formation: Theoretical model and experiments JP2006040991A|2006-02-09|半導体装置の評価方法、および製造方法 Aghaei et al.2015|IR real-time analyses for PV system monitoring by digital image processing techniques CN1646896A|2005-07-27|多检测器缺陷检测系统和用于检测缺陷的方法 CN103000756A|2013-03-27|光生伏打电池制造 Phang et al.2005|A review of near infrared photon emission microscopy and spectroscopy US8379964B2|2013-02-19|Detecting semiconductor substrate anomalies EP2141505A1|2010-01-06|Photovoltaic devices inspection apparatus and method of determining defects in photovoltaic device EP1416288B1|2005-03-02|Verfahren und Anordnung zur optischen Detektion mechanischer Defekte in Halbleiter-Bauelementen, insbesondere in Solarzellen-Anordnungen
同族专利:
公开号 | 公开日 US20150323457A1|2015-11-12| CN102017191A|2011-04-13| TWI609177B|2017-12-21| CN104022056B|2017-04-12| CN104022056A|2014-09-03| KR20100131512A|2010-12-15| EP2272101A4|2012-06-27| WO2009121133A1|2009-10-08| TW201000887A|2010-01-01| US9546955B2|2017-01-17| JP5936657B2|2016-06-22| CN102017191B|2014-05-28| US9103792B2|2015-08-11| WO2009121133A8|2010-09-10| US20110025839A1|2011-02-03| EP2272101A1|2011-01-12| AU2009230877A1|2009-10-08| JP2015038481A|2015-02-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JP2004511104A|2000-10-06|2004-04-08|エーオーティーアイ オペレーティング カンパニー インコーポレーティッドAoti Operating Company,Inc.|表面の金属コンタミネーションを検出する方法| JP2004526964A|2001-03-27|2004-09-02|エーオーティーアイオペレーティングカンパニーインコーポレーティッドAotiOperatingCompany,Inc.|半導体のマイクロ欠陥の検出と分類| JP2003324136A|2002-04-30|2003-11-14|Nireco Corp|結晶欠陥の自動検査装置及び自動検査方法| JP2006522929A|2003-04-09|2006-10-05|エーオーティーアイオペレーティングカンパニーインコーポレーティッドAotiOperatingCompany,Inc.|半導体の金属粒子を検出する方法と装置| WO2007041758A1|2005-10-11|2007-04-19|Bt Imaging Pty Limited|Method and system for inspecting indirect bandgap semiconductor structure| JP2009512198A|2005-10-11|2009-03-19|ビーティーイメージングピーティーワイリミテッド|間接バンドギャップ半導体構造を検査する方法およびシステム|WO2013088778A1|2011-12-14|2013-06-20|シャープ株式会社|多結晶シリコンウエハの検査方法および製造方法ならびにその用途| JP2013156269A|2009-08-03|2013-08-15|Npc Inc|Solar cell defect inspection apparatus, defect inspection method, and program| JP2013167596A|2012-02-17|2013-08-29|Honda Motor Co Ltd|Defect inspection apparatus, defect inspection method and program| JP2013197173A|2012-03-16|2013-09-30|Toshiba Corp|太陽電池アレイ検査方法および太陽電池アレイ検査装置| JP2014531766A|2011-09-29|2014-11-27|インリー エナジー(チャイナ)カンパニー リミテッド|太陽電池シート及びその熱処理プロセス| JP2017095338A|2015-11-27|2017-06-01|株式会社Sumco|ウェーハの評価方法、シリコンウェーハの製造方法、シリコン単結晶インゴット| WO2019117228A1|2017-12-13|2019-06-20|パナソニックIpマネジメント株式会社|画像処理システム、検査システム、画像処理方法、及びプログラム|US5006717A|1988-12-26|1991-04-09|Matsushita Electric Industrial Co., Ltd.|Method of evaluating a semiconductor device and an apparatus for performing the same| JPH08139196A|1994-11-08|1996-05-31|Ricoh Co Ltd|半導体素子シミュレーション装置| US5512999A|1995-03-06|1996-04-30|The United States Of America As Represented By The Secretary Of The Air Force|Method for nondestructive measurement of dislocation density in GaAs| GB9618897D0|1996-09-10|1996-10-23|Bio Rad Micromeasurements Ltd|Micro defects in silicon wafers| GB0216184D0|2002-07-12|2002-08-21|Aoti Operating Co Inc|Detection method and apparatus| US7119569B2|2004-03-05|2006-10-10|Qc Solutions, Inc.|Real-time in-line testing of semiconductor wafers| US20050252545A1|2004-05-12|2005-11-17|Spire Corporation|Infrared detection of solar cell defects under forward bias| JP3917154B2|2004-11-19|2007-05-23|独立行政法人宇宙航空研究開発機構|半導体試料の欠陥評価方法及び装置| EP1840541A4|2004-11-30|2010-04-07|Nat Univ Corp Nara Inst|Method and apparatus for evaluating solar cell and use thereof| US20070018192A1|2004-12-21|2007-01-25|Yale University|Devices incorporating heavily defected semiconductor layers| US20060267007A1|2004-12-31|2006-11-30|Yale University|Devices incorporating heavily defected semiconductor layers| KR20070065727A|2005-12-20|2007-06-25|주식회사 실트론|포토 루미네센스를 이용한 디바이스 결함위치 확인방법| JP4908885B2|2006-03-17|2012-04-04|株式会社デンソー|半導体装置の特性予測方法及び特性予測装置| EP2024716B1|2006-05-05|2020-07-01|BT Imaging Pty Limited|Method and system for testing indirect bandgap semiconductor devices using luminescence imaging| KR20100075875A|2007-08-30|2010-07-05|비티 이미징 피티와이 리미티드|광발전 전지 제조|EP2024716B1|2006-05-05|2020-07-01|BT Imaging Pty Limited|Method and system for testing indirect bandgap semiconductor devices using luminescence imaging| CN106932369A|2009-07-20|2017-07-07|Bt成像股份有限公司|光致发光测量中掺杂浓度和少数载流子寿命分离| WO2011017776A1|2009-08-14|2011-02-17|Bt Imaging Pty Ltd|Photoluminescence imaging of surface textured wafers| US9035267B2|2010-01-04|2015-05-19|Bt Imaging Pty Ltd|In-line photoluminescence imaging of semiconductor devices| WO2011120089A1|2010-03-30|2011-10-06|Bt Imaging Pty Ltd|Control of laser processing steps in solar cell manufacture| EP2378278B1|2010-04-19|2018-03-28|Airbus Defence and Space GmbH|Method for screening of multi-junction solar cells| DE102010017557A1|2010-06-24|2011-12-29|Schott Solar Ag|Method for quality control of a substrate to be processed| WO2012012795A1|2010-07-23|2012-01-26|First Solar, Inc|In-line metrology system and method| US8934705B2|2010-08-09|2015-01-13|Bt Imaging Pty Ltd|Persistent feature detection| JP5682858B2|2011-05-20|2015-03-11|株式会社Sumco|シリコンウェーハの評価方法および製造方法| JP6131250B2|2011-06-24|2017-05-17|ケーエルエー−テンカー コーポレイション|光ルミネセンス画像化を使用する発光半導体デバイスの検査の方法および装置| US8604447B2|2011-07-27|2013-12-10|Kla-Tencor Corporation|Solar metrology methods and apparatus| US20130100275A1|2011-08-04|2013-04-25|Kla-Tencor Corporation|Apparatus and method to estimate the potential efficiency of a polycrystalline solar cell| US8750596B2|2011-08-19|2014-06-10|Cognex Corporation|System and method for identifying defects in a material| US20130252011A1|2011-09-14|2013-09-26|MEMC Singapore, Pte. Ltd. |Multi-Crystalline Silicon Ingot And Directional Solidification Furnace| US9246434B2|2011-09-26|2016-01-26|First Solar, Inc|System and method for estimating the short circuit current of a solar device| ITUD20110162A1|2011-10-13|2013-04-14|Applied Materials Italia Srl|Metodo ed apparato per la realizzazione di celle solari con emettitori selettivi| EP2801107A4|2011-11-07|2015-12-16|Bt Imaging Pty Ltd|Wafer grading and sorting for photovoltaic cell manufacture| KR101301430B1|2011-12-07|2013-08-28|주식회사 엘지실트론|웨이퍼의 결함측정방법| NL2007941C2|2011-12-09|2013-06-11|Stichting Energie|Qualification of silicon wafers for photo-voltaic cells by optical imaging.| DE102011056404A1|2011-12-14|2013-06-20|Schott Solar Ag|Verfahren zur Qualitätsermittlung eines Siliciumwafers| US9136185B2|2011-12-19|2015-09-15|MEMC Singapore Pte., Ltd.|Methods and systems for grain size evaluation of multi-cystalline solar wafers| CN102680444B|2012-05-11|2014-12-31|常州天合光能有限公司|一种多晶硅片晶向测试方法| WO2014005185A1|2012-07-06|2014-01-09|Bt Imaging Pty Ltd|Methods for inspecting semiconductor wafers| DE102012106435A1|2012-07-17|2014-05-22|Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.|Method for quality evaluation of a brick cut out of an ingot| FR2994264B1|2012-08-02|2014-09-12|Centre Nat Rech Scient|PROCESS FOR ANALYZING THE CRYSTALLINE STRUCTURE OF A POLY-CRYSTALLINE SEMICONDUCTOR MATERIAL| KR20150043478A|2012-08-15|2015-04-22|노바 메주어링 인스트루먼츠 엘티디.|인-시추 측정을 위한 광학 계측| WO2014150768A1|2013-03-15|2014-09-25|First Solar, Inc.|Method providing inline photoluminescence analysis of a photovoltaic device| CN103364704B|2013-06-26|2015-10-28|常州天合光能有限公司|一种多晶硅片开路电压的预测方法| US9685906B2|2013-07-03|2017-06-20|Semilab SDI LLC|Photoluminescence mapping of passivation defects for silicon photovoltaics| FR3015770B1|2013-12-19|2016-01-22|Commissariat Energie Atomique|METHOD AND SYSTEM FOR QUALITY CONTROL OF PHOTOVOLTAIC CELLS| US9754365B2|2014-02-21|2017-09-05|Applied Materials, Inc.|Wafer inspection method and software| CN104646314A|2015-02-02|2015-05-27|南昌大学|一种led芯粒的筛选方法| US10012593B2|2015-05-04|2018-07-03|Semilab Semiconductor Physics Laboratory Co., Ltd.|Micro photoluminescence imaging| US10018565B2|2015-05-04|2018-07-10|Semilab Semiconductor Physics Laboratory Co., Ltd.|Micro photoluminescence imaging with optical filtering| US9564854B2|2015-05-06|2017-02-07|Sunpower Corporation|Photonic degradation monitoring for semiconductor devices| JP6296001B2|2015-05-20|2018-03-20|信越半導体株式会社|シリコンエピタキシャルウェーハの製造方法及び評価方法| US9866171B2|2015-10-13|2018-01-09|Industrial Technology Research Institute|Measuring device for property of photovoltaic device and measuring method using the same| CN106024655A|2016-06-07|2016-10-12|韩华新能源(启东)有限公司|一种多晶硅片缺陷的分类方法| US10031997B1|2016-11-29|2018-07-24|Taiwan Semiconductor Manufacturing Co., Ltd.|Forecasting wafer defects using frequency domain analysis| FR3066590A1|2017-05-22|2018-11-23|Centre National De La Recherche Scientifique - Cnrs -|Spectroscopie quantitative de densite de defauts electroniques dans un photorecepteur en couches minces, notamment dans une cellule solaire| CN107607548A|2017-09-29|2018-01-19|青海黄河上游水电开发有限责任公司光伏产业技术分公司|通过三维图像检测光伏组件的隐裂缺陷的方法| FR3073944B1|2017-11-21|2019-12-20|Commissariat A L'energie Atomique Et Aux Energies Alternatives|METHOD FOR THE PHOTOLUMINESCENCE MEASUREMENT OF A SAMPLE| EP3627568A1|2018-09-21|2020-03-25|Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.|Verfahren zur verarbeitung von abbildungen von halbleiterstrukturen, sowie zur prozesscharakterisierung und prozessoptimierung mittels semantischer datenkompression|
法律状态:
2012-03-09| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120308 | 2013-07-10| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 | 2013-10-09| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20131008 | 2013-10-17| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131016 | 2013-11-08| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20131107 | 2013-11-15| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131114 | 2013-12-10| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131209 | 2014-04-23| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140422 | 2014-07-23| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140722 | 2014-07-30| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140729 | 2014-10-22| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141021 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|